Appendix E Radiation

This appendix presents basic information about radiation. The information is intended to serve as a basis for understanding the potential doses associated with releases of radionuclides from the Oak Ridge Reservation, not as a comprehensive discussion of radiation and its effects on the environment and on biological systems.

Radiation comes from natural and anthropogenic (human-produced) sources. People are constantly exposed to naturally occurring radiation. For example, cosmic radiation, radon in air, potassium in food and water, and uranium, thorium, and radium in the earth's crust are all sources of radiation. The following discussion describes important aspects of radiation and its types, sources, and pathways, as well as radiation measurement and dose information.

E.1. Atoms and Isotopes

All matter is made up of atoms. An atom is "a unit of matter consisting of a single nucleus surrounded by a number of electrons equal to the number of protons in the nucleus" (Alter 1986). The number of protons in the nucleus determines an element's atomic number or chemical identity. Except for hydrogen, the nucleus of each type of atom also contains at least one neutron. Unlike protons, the neutrons may vary in number among atoms of the same element. The number of neutrons and protons determines the atomic weight. Atoms of the same element that have different numbers of neutrons are called isotopes. In other words, isotopes have the same chemical properties but different atomic weights, as illustrated in Figure E.1.

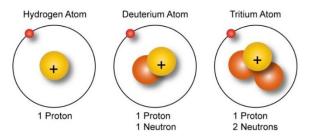


Figure E.1. The hydrogen atom and its isotopes

For example, the element uranium has 92 protons. All isotopes of uranium, therefore, have 92 protons. However, each uranium isotope has a different number of neutrons:

- Uranium-234 has 92 protons and 142 neutrons
- Uranium-235 has 92 protons and 143 neutrons
- Uranium-238 has 92 protons and 146 neutrons

Some isotopes are stable, or nonradioactive, and some are radioactive. Radioactive isotopes are called radionuclides or radioisotopes. To become stable, radionuclides emit energy in the form of rays or particles. This emission of energy is known as radioactive decay. Each radioisotope has a radioactive half-life, which is the average time required for half of a specified number of atoms to decay. Half-lives can be very short (fractions of a second) or very long (millions of years), depending on the isotope. Table E.1 shows the half-lives of selected radionuclides.

Table E.1. Selected radionuclide half-lives

Radionuclide	Symbol	Half-life (in years unless otherwise noted)	Radionuclide	Symbol	Half-life (in years unless otherwise noted)
Americium-241	²⁴¹ Am	432.2	Plutonium-238	²³⁸ Pu	87.74
Americium-243	²⁴³ Am	7.37E+3	Plutonium-239	²³⁹ Pu	2.411E+4
Argon-41	⁴¹ Ar	1.827 hours	Plutonium-240	²⁴⁰ Pu	6.564E+3
Beryllium-7	⁷ Be	53.22 days	Potassium-40	⁴⁰ K	1.251E+9
Californium-252	²⁵² Cf	2.645	Radium-226	²²⁶ Ra	1.6E+3
Carbon-11	11 C	20.39 minutes	Radium-228	²²⁸ Ra	5.75
Carbon-14	¹⁴ C	5.70E+3	Ruthenium-103	¹⁰³ R u	39.26 days
Cerium-141	¹⁴¹ Ce	32.508 days	Samarium-153	¹⁵³ Sm	46.5 hours
Cerium-144	¹⁴⁴ Ce	284.91 days	Strontium-89	⁸⁹ Sr	50.53 days
Cesium-134	¹³⁴ Cs	2.0648	Strontium-90	⁹⁰ Sr	28.79
Cesium-137	¹³⁷ Cs	30.167	Technetium-99	⁹⁹ Tc	2.111E+5
Cesium-138	¹³⁸ Cs	32.41 minutes	Thorium-228	²²⁸ Th	1.9116
Cobalt-58	⁵⁸ Co	70.86 days	Thorium-230	²³⁰ Th	7.538E+4
Cobalt-60	⁶⁰ Co	5.271	Thorium-232	²³² Th	1.405E+10
Curium-242	²⁴² Cm	162.8 days	Thorium-234	²³⁴ Th	24.1 days
Curium-244	²⁴⁴ Cm	18.1	Tritium	3H	12.32
lodine-129	129	1 <i>57</i> E+7	Uranium-234	²³⁴ U	2.455E+5
lodine-131	131	8.02 days	Uranium-235	235⋃	7.04E+8
Krypton-85	⁸⁵ Kr	10.756	Uranium-236	²³⁶ U	2.342E+7
Krypton-88	⁸⁸ Kr	2.84 hours	Uranium-238	²³⁸ U	4.468E+9
Lead-212	²¹² Pb	10.64 hours	Xenon-133	¹³³ Xe	5.243 days
Manganese-54	⁵⁴ Mn	312.12 days	Xenon-135	¹³⁵ Xe	9.14 hours
Neptunium-237	²³⁷ Np	2.144E+6	Yttrium-90	90 Y	64.1 hours
Niobium-95	⁹⁵ Nb	34.991 days	Zirconium-95	⁹⁵ Zr	64.032 days

Source: ICRP 2008

E.2. Radiation

Radiation is energy in the form of waves or particles moving through space. Visible light, heat, radio waves, and alpha particles are examples of radiation. When people feel warmth from sunlight, they are actually absorbing the radiant energy emitted by the sun.

Electromagnetic radiation is a form of energy that travels in waves. It comes from natural and anthropogenic sources and includes gamma rays, x-rays, ultraviolet light, and radio waves. Particulate radiation consists of particles that have mass and energy, such as alpha and beta particles. Radiation is also characterized as ionizing or nonionizing by its energy and the way it interacts with matter.

lonizing radiation

Normally an atom has an equal number of protons (positively charged) and electrons (negatively charged), but atoms can lose or gain electrons in a process known as ionization. Ionizing radiation removes bound electrons from an electrically neutral atom, leaving the atom with a net positive charge. Examples of ionizing radiation include alpha and beta particles, gamma rays, and x-rays (World Health Organization 2016).

Ionizing radiation is capable of changing the chemical state of matter and subsequently causing biological damage. By this mechanism, it is potentially harmful to human health.

Nonionizing radiation

Nonionizing radiation is described as a series of energy waves composed of oscillating electric and magnetic fields traveling at the speed of light and is lower in energy than ionizing radiation (Department of Labor 2025). It includes the spectrum of ultraviolet light, visible light, infrared radiation, microwaves, radio waves, and other extremely low frequency fields. Lasers commonly operate in the ultraviolet, visible, and infrared frequencies. Microwave radiation is absorbed near the skin, while radio frequency radiation may be absorbed throughout the body. At high enough

intensities, both will damage tissue through heating. Damage to the eyes and skin may occur from excessive exposure to visible light (Department of Labor 2025).

In the discussion that follows, the term "radiation" is used to describe ionizing radiation.

E.3. Measuring lonizing Radiation

To determine the possible effects of exposure to radiation on the health of the environment and the public, the radiation must be measured. By quantifying the levels of exposure, its potential to cause damage may be estimated.

Activity

To determine the level of radiation in the environment, the rate of radioactive decay or activity is measured. The rate of decay varies widely among radioisotopes. For that reason, 1 gram of a radioactive substance may contain the same amount of activity as several tons of another material. This activity is expressed in a unit of measure known as a curie (Ci). More specifically, 1 Ci equals 3.7×10^{10} (37,000,000,000) nuclear disintegrations per second (dps). In the International System of Units, 1 dps equals 1 becquerel (Bq).

Absorbed dose

The total amount of energy absorbed per unit mass of an exposed material as a result of exposure to radiation is expressed in a unit of measure known as a rad, short for "radiation absorbed dose." The amount of radiation, or number of rads, humans or biota are exposed to is used to estimate the effect of the absorbed energy and the potential biological damage that may occur. In the International System of Units, 100 rads equal 1 gray (Gy).

Effective dose

The measure of potential biological damage to the body caused by exposure to and subsequent absorption of radiation is expressed in a unit of measure known as a rem, an abbreviation for

"roentgen equivalent man." For radiation protection purposes, 1 rem of any type of radiation has the same damaging effect. Because a rem represents a fairly large dose, the measure is usually expressed in millirem (mrem), which is 1/1000 of a rem. In the International System of Units, 1 sievert (Sv) equals 100 rems; 1 millisievert (mSv) equals 100 mrem. The effective dose (ED) is the tissueweighted sum of equivalent dose, which accounts for type of radiation absorbed via a radiation weighting factor in specified tissues or organs. The ED is based on tissue-weighting factors for 12 specific tissues or organs plus a weighting factor for the remaining organs and tissues. In addition, the ED is based on the recently developed lung model, gastrointestinal absorption fractions, and biokinetic models used for selected elements. Specific types of EDs are defined as follows (ICRP 2007):

- Committed ED the weighted sum of the committed organ or tissue equivalent doses in the human body during the 50-year period following intake (70 years for children)
- Collective ED the product of the mean ED for a population and the number of persons exposed

E.4. Radiation Exposure Pathways

People can be exposed to radionuclides in the environment through a number of routes, as shown in Figure E.2. Potential routes for internal and external exposure are referred to as pathways. For example, radionuclides in air could be inhaled directly or could fall on grass in a pasture. If the grass were then consumed by cows, it would be possible for the radionuclides to impact the cow's milk and subsequently the people drinking the milk. Similarly, radionuclides in water could be ingested by fish, and fishermen or other consumers could then ingest the radionuclides in the fish tissue. People swimming in the water also would be exposed. Exposure to ionizing radiation varies significantly with

Figure E.2. Examples of radiation pathways

geographic location, diet, drinking water source, and building construction.

E.5. Radiation Sources and Doses

Basically, the process of radioactive decay generates radiant energy. People absorb some of the energy to which they are exposed, either from external radiation sources or internally deposited radionuclides. The amount of energy absorbed is reflected in an individual's dose. Whether radiation is natural or anthropogenic, it has the same effect on people.

There are five broad categories for radiation exposure to the US population (NCRP 2009):

- Exposure to ubiquitous background radiation, including radon in homes
- Exposure to patients from medical procedures
- Exposure from consumer products or activities involving radiation sources
- Exposure from industrial, security, medical, educational, and research radiation sources
- Exposure to workers that results from their occupations

Figure E.3 shows the percent contributions of various sources of exposure to the total collective dose for the US population in 2006. As shown, the major sources are radon and thoron (37 percent), computed tomography (24 percent), and nuclear medicine (12 percent) (NCRP 2009). Consumer, occupational, and industrial sources contribute about 2 percent to the total US collective dose.

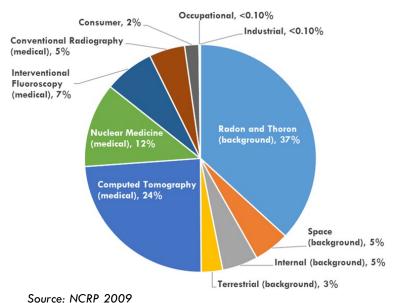


Figure E.3. Exposure categories for collective effective dose for 2006

E.5.1. Background Radiation

Naturally occurring radiation is the major source of radiation in the environment. Sources of background radiation exposure include the following:

- External exposure from space or cosmic radiation
- External exposure from terrestrial radiation
- Internal exposure from inhalation of radon, thoron, and their progeny
- Internal exposure from radionuclides in the body

E.5.1.1. External Exposures

Space or cosmic radiation

Energetically charged particles from outer space continuously hit the earth's atmosphere. These particles and the secondary particles and photons they create are called cosmic radiation. Because the atmosphere provides some shielding against

cosmic radiation, the intensity of this radiation increases with altitude above sea level as the atmosphere becomes less dense. For example, a person in Denver is exposed to more cosmic radiation than a person in New Orleans.

The average annual effective dose to people in the United States from cosmic radiation is about 33 mrem, or 0.33 mSv (NCRP 2009). Effective dose rates from cosmic radiation depend on geomagnetic latitude and elevation above sea level.

Terrestrial radiation

Terrestrial radiation refers to radiation emitted from radioactive materials in the earth's rocks, soils, and minerals. Radon

(Rn), radon progeny (the relatively short-lived decay products from the decay of the radon isotope ²²²Rn), potassium (⁴⁰K), isotopes of thorium (Th), and isotopes of uranium (U) are the elements responsible for most terrestrial radiation. The average annual dose from terrestrial gamma radiation is about 21 mrem (0.21 mSv) in the United States, but it varies geographically across the country (NCRP 2009). Typical reported values are about 23 mrem (0.23 mSv) on the Atlantic and Gulf Coasts, about 90 mrem (0.9 mSv) on the Colorado Plateau, and about 46 mrem (0.46 mSv) elsewhere in the United States (EPA 2025).

E.5.1.2. Internal Exposures

Radionuclides in the environment enter the body with the air people breathe and the foods they eat. They can also enter through an open wound.

Natural radionuclides that can be inhaled and

ingested include isotopes of uranium and their progeny, especially radon (²²²Rn) and its progeny, thoron (²²⁰Rn) and its progeny, potassium (⁴⁰K), rubidium (⁸⁷Rb), and carbon (¹⁴C). Radionuclides contained in the body are dominated by ⁴⁰K and polonium (²¹⁰Po); others include ⁸⁷Rb and ¹⁴C (NCRP 1987).

Radon and thoron and decay products

The major contributors to the annual effective dose from background radiation sources are radon and thoron and their short-lived decay products. As shown in Figure E.3, 37 percent of the dose from all exposure categories is from radon and thoron and their decay products, which contribute an average dose to an individual of about 228 mrem (2.28 mSv) per year (NCRP 2009). Radon is an inert gas, and a small fraction is retained in the body; however, the dose to the lungs comes from the short-lived radon decay products. Radon levels vary widely across the United States. Elevated levels are most commonly found in the Appalachians, the upper Midwest, and the Rocky Mountain states (NCRP 2009).

Other internal radiation sources

Other sources of internal radiation include ⁴⁰K, ²³²Th, and the ²³⁸U series. The primary source of ⁴⁰K in body tissues is food, primarily fruits and vegetables. Sources of radionuclides from the ²³²Th and ²³⁸U series are food and water (NCRP 2009). The average dose from these other internal radionuclides is about 29 mrem (0.29 mSv) per year. This dose is attributed predominantly to the naturally occurring radioactive isotope of potassium, ⁴⁰K.

E.5.2. Anthropogenic Radiation

In addition to background radiation, most people have been exposed to anthropogenic sources of radiation such as consumer products, medical sources, industrial by-products, and fallout from atmospheric atomic bomb tests. No atmospheric testing of atomic weapons has occurred since 1980 (NCRP 1987).

Consumer products

Some consumer products are sources of radiation. The radiation in these products—which includes smoke detectors, radioluminous products (e.g., self-illuminating exit signs in commercial buildings), and airport x-ray baggage inspection systems—is essential to the performance of the device. In other products, such as tobacco products and building materials, the radiation occurs incidentally to the product's function (NCRP 2009).

The US annual dose to an individual from consumer products and activities averages about 13 mrem (0.13 mSv), ranging between 0.1 and 40 mrem (0.001 and 0.4 mSv). Cigarette smoking accounts for about 35 percent of this dose. Other important sources are building materials (27 percent), commercial air travel (26 percent), mining and agriculture (6 percent), miscellaneous consumer-oriented products (3 percent), combustion of fossil fuels (2 percent), highway and road construction materials (0.6 percent), and glass and ceramics (less than 0.03 percent). Television and display monitors, sewage sludge and ash, and self-illuminating signs contribute negligible doses (NCRP 2009).

Medical sources

Radiation is an important tool in diagnostic medicine and treatment, which are the main sources of exposure to the public from anthropogenic radiation. Exposure is deliberate and is directly beneficial to the patients exposed. In general, medical exposures from diagnostic or therapeutic x-rays result from beams directed to specific areas of the body, so not all organs are uniformly irradiated. Nuclear medicine examinations and treatments involve the internal administration of radioactive compounds, or radiopharmaceuticals, by injection, inhalation, consumption, or insertion. Radiation and radioactive materials also are used in preparing medical instruments, including sterilizing heatsensitive products such as plastic heart valves.

Nuclear medicine examinations, which internally administer radiopharmaceuticals, account for a significant portion of dose from anthropogenic sources. However, the radionuclides used for specific tests are not uniformly distributed throughout the body. In these cases, the concept of ED, which relates the significance of exposures of organs or body parts to the effect on the entire body, is useful in making comparisons. The average annual ED from medical examinations is roughly 300 mrem (3 mSv), including 147 mrem (1.47 mSv) from computed tomography scans, 77 mrem (0.77 mSv) from nuclear medicine procedures, 43 mrem (0.43 mSv) from interventional fluoroscopy, and 33 mrem (0.33 mSv) from conventional radiography and fluoroscopy (NCRP 2009). Not everyone receives such exams each year.

Other sources

Other sources of radiation include emissions of radioactive materials from nuclear facilities such as uranium mines, fuel-processing plants, and nuclear power plants; transportation of radioactive materials; and emissions from mineral-extraction facilities. The dose to the general public from these sources has been estimated at less than 1 mrem (0.01 mSv) per year (NCRP 1987).

E.6. References

Alter 1986. Alter, H. *A Glossary of Terms in Nuclear Science and Technology*. American Nuclear Society, La Grange Park, Illinois.

- Department of Labor 2025. *OSHA Safety and Health Topics: Non Ionizing Radiation.* Retrieved July 15, 2025, from https://www.osha.gov/nonionizing-radiation.
- EPA 2025. *Calculate Your Radiation Dose.* US Environmental Protection Agency. Retrieved July 15, 2025, from https://www.epa.gov/radiation/calculate-your-radiation-dose.
- ICRP 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Annals of the ICRP 37 (2-4). International Commission on Radiological Protection, Ottawa, Canada.
- ICRP 2008. *Nuclear Decay Data for Dosimetric Calculations*. ICRP Publication 107. *Annals of the ICRP* 38(3). International Commission on Radiological Protection, Ottawa, Canada.
- NCRP 1987. *Ionizing Radiation Exposure of the Population of the United States*. NCRP Report No. 93. National Council on Radiation Protection and Measurements, Bethesda, MD.
- NCRP 2009. *Ionizing Radiation Exposure of the Population of the United States.* NCRP Report No. 160, National Council on Radiation Protection and Measurements, Bethesda, Maryland.
- World Health Organization 2016. *Ionizing radiation, health effects and protective measures*. Retrieved July 15, 2025, from https://www.who.int/news-room/fact-sheets/detail/ionizing-radiation-health-effects-and-protective-measures.